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A piecewise linear finite element-based method of lines is presented for the numerical 
solution of coupled parabolic partial differential equations which model biological and 

physicochemical reaction-diffusion processes in one space dimension. The vertial lines 
emanating from the space nodes in this method change at automatically selected times when, 
in order to control a norm of the space discretization error, adaptive spatial regridding occurs. 
The regridding algorithm is an extension of one described previously by the authors [7] and 
is implemented in the program FEMOL 1, which uses the LSODI package [14, 151 of 
Hindmarsh and Painter to integrate the ordinary differential equations in time along the ver- 
tical lines. Computational results show that the method is efhcient, that a posteriori estimates 
of the space discretization error are accurate, and that the adaptive procedure reliably con- 
trols the space discretization error. ‘i; 1986 Academic Press, Inc. 

1. INTRODUCTION 

Reaction-diffusion processes occur in many branches of biology and physical 
chemistry. Examples include substrate transport and consumption in the microcir- 
culation, flame propagation in combustion, nerve conduction, and interactions of 
mobile populations in ecosystems. These diverse phenomena are often modeled by 
initial boundary value problems (IBVPs) in which the governing parabolic partial 
differential equations (PDEs) are nonlinear and coupled only through the rates at 
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which physical components react. Such IBVPs in one space dimension are the 
problems considered in this paper. 

Solutions of these problems may decay to steady states, oscillate in time, or 
evolve as localized traveling waveforms. Spatial rezoning or regridding in numerical 
methods for time-dependent PDEs with the latter type of solutions has become 
quite popular. Grid evolution is generally governed by a feedback procedure in the 
“physical” reference frame or by explicit mappings from “physical” to “com- 
putational” coordinates, either in an a priori manner or as part of a feedback 
procedure. Schemes utilizing coordinate mappings are surveyed in Thompson, 
Warsi, and Mastin [22]. 

In this paper we describe the implementation of a variation of the classical 
method of lines (MOL) in which the space grid is updated in a feedback 
(adaptive)’ procedure. The MOL reduces an IBVP through space discretization 
into an initial value problem for a system of ordinary differential equations (ODES) 
in time. The ODES determine spatial parameters of the solution on vertical lines 
extending in time. The method described here is based on a finite element for- 
mulation using linear elements in space. We refer to this approach as the FEMOL. 
The ODES in the FEMOL determine nodal values of the solution. They are 
integrated via variable-order, variable-step implicit formulas as implemented in the 
LSODI package of Hindmarsh and Painter (cf. [ 14, 151). In the adaptive FEMOL 
grids change discontinuously in time, as nodes are both added and deleted. Such 
regridding is often said to be locally “static,” in contrast to “dynamic” regridding, 
where changes occur continuously in time. 

Most methods described in the literature which employ static, dynamic, or com- 
binations of both types of regridding can be viewed as MOL extensions or 
variations. In Miller and Miller [ 161, Gelinas, Doss, and Miller [ 121, and Miller 
[17], the moving finite element method was developed, where a fixed number of 
nodes are used and nodal positions are computed together with the solution values 
at the nodes. The concept of moving (in time) meshes was also used in Davis and 
Flaherty [ 121 and Flaherty et al. [lo]. Many regridding methods for time-depen- 
dent PDEs have attractive properties. The reader is especially referred to Berger 
and Oliger [4], Dwyer, Kee, and Sanders [9], Gannon [ll], and Harten and 
Hyman [ 131. 

While these methods incorporate various principles and constraints in feedback 
approaches, all have similar objectives. Regridding is expected to yield high 
accuracy, reliability, and robustness per computational cost. It is difficult to quan- 
titatively compare various feedback (adaptive) methods, despite the fact their goals 
are related, but it should be possible to measure the success or failure of each in 
achieving its goals. Unfortunately, the goals often are not well formulated, quan- 
tified, or used in supporting computational experiments. 

’ The terms “adaptive” and “feedback” arc used interchangeably to describe numerical methods here. 
For analyses which distinguish between the two, see Rheinboldt [20] and Babubka and Vogelius [l]. 
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The primary goal of the adaptive FEMOL is to control the space discretization 
error of the approximate solution as measured in a weighted L, gradient norm 
(weighted H’ norm). This norm arises naturally in connection with the finite 
element formulation. Error control is achieved through control of computed error 
estimates. The a posteriori estimator used here is similar to that analyzed for linear 
parabolic PDEs by the authors in [6,7]. The estimator is obtained by summing 
local error indicators. These are formed from PDE residuals evaluated with the 
approximate solution inside each of the elements. 

The regridding strategy described here extends an earlier version of the authors 
[7] and was summarized for linear PDEs in Bieterman [S]. A grid is retained until 
the estimated error exceeds a preset tolerance. The error is lowered below this 
tolerance by adding and deleting nodes. The most important part of grid construc- 
tion is a pattern recognition procedure used to determine the “shape” of the grid. In 
this procedure information is extracted fom the local error indicators, reduced to a 
grid-independent form, and relevant features taken from this reduced data are com- 
pared. 

This paper is organizied as follows. Section 2 contains mathematical details of the 
problem and classical version of the method. The salient features of the adaptive 
FEMOL are described in Section 3, along with the goals of the method and the 
basic strategy used to achieve them. Achievement of the goals depends first and 
foremost on the quality of the error estimator. The estimator and the local 
indicators used to form it are the subjects of Section 4. In Section 5 we introduce 
the notion of “shape” and “intensity” to describe a grid. The specific strategy used 
to construct a grid is to somewhat directly control these two grid properties. This 
strategy and details of the relinementderelinement algorithm are given in Section 5. 
In Section 6 we describe the selection of the parameter which controls grid intensity. 
The pattern recognition procedure used to select the function controlling grid shape 
is presented in Section 7. Section 8 contains the results of many carefully conducted 
computational experiments with four reaction-diffusion problems. These results 
enable one to quantitatively evaluate the performance of the method. They show 
how the regridding strategy is carried out, how the error estimator works, and the 
dependence of error control on error estimation. The final section summarizes many 
of the important aspects of the method. 

2. PROBLEM AND CLASSICAL METHOD DESCRIPTION 

Let 0=(x: -COCK- <X<XJ+ <CO}, &2=X- u&X+ and fi=Quaaa. 
We are interested in finding u = { u’(t, x)}~= l,NPDE for t E [0, T] and x E r;T which 
satisfies the differential equations 

uf - (a’(x) ugx = j-q 2, x, 24); XEQ, ?E(O, r], i=l,NPDE, (1.a) 
the boundary conditions 

Lx’(x)u’+ p(x)u; = g’(t, x); x E %2, t E (0, T], i = 1, NPDE, (1.b) 
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and the initial conditions 

u’= u;(x); XEO, t=O, i= 1, NPDE. (1.c) 

For x~B it is assumed that a’(x) >, 0, i= 1, NPDE, with a’(x) 3 a, >O for at 
least one index i. The functions C(~ and pi determine the type of boundary conditions 
(BCs). It is assumed that /I’(%2 - ) < 0, /I’(%2 + ) 2 0, and ai 2 0 for x E 80 and 
i = 1, NPDE. With reasonable problem data, the solution u of Eqs. (1) exists and is 
a smooth mapping of [0, r] into the Hilbert space 

sf= {u= {Ui)i4,NPDE : ui, ul, E L,(Q); i = 1, NPDE}. 

Here, &(a) denotes the usual space of square integrable functions on Q, with norm 
and inner product I/ Ilo and ( , ), respectively. Provided approriate conditions on 
(4 cl;, a% I,NPDE hold, the semi-norm 

i 

NPDE 

I 

l/2 

III 0 Ill = c <JC u: > 
i=l 

is a norm on X. 
We will denote by 

6= {air =x,<x, <x2 < ... <X&, <XN =aQ+} 

a space grid, with nodes {xn) and elements { (x,~ , , x,)}, and write 

(2) 

h, =x, -x,,-1 for n=l, N. (3) 

S(6) c 2 denotes the finite element subspace of functions which are linear on each 
element of 6. 

The classical version of the FEMOL is formulated in the present setting as 
follows. With given 6, the semi-discrete approximation 8: [0, T] + S(6) of u 
satisfies the equations 

dx) -, (Ofk . ), @> + (a’8:(t, ), @i:> +ui(x)Bio U(t, x) @i(x) 
an+ awl 

= (lqt, .) - u'(x) i asz+ - '19 @i> + pitx) g tt> x) @i(x) as2 _ ; t E (0, T), i = 1, NPDE, 

@ = {@‘>j= I,NPDE E s(6) 

and 

qo, . )= U(0, . ). 

(4.a) 

(4.b) 

U(0, . ) E S(6) is the linear interpolate of uO(. ) and F(t, . , 8) E S(6) interpolates 
f(t, . , 0). Here it has been assumed for simplicity that p’(x) # 0 for all i. Otherwise, 
S(6) and Eqs. (4) are modified by usual finite element techniques. 
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Equations (4) are equivalent to requiring that the vector o[t] = 
{ ~!?(t, x,)}~= I,NPDE;n=O,N satisfies the ODES 

M.~D[t]+A-B[t3=M.F[r, O]+l?[t]; fE (0, n (5.a) 

and initial condition 

D[O] = U[O]. (5.b) 

In Eqs. (5) U[O] and F[t, 81 are the NPDE . (N+ 1)-dimensional vectors of nodal 
values of U(0, . ) and F(t, , 0). A4 and A are symmetric matrices which are 
positive definite and nonnegative, respectively. With an appropriate ordering of the 
nodal values, these matrices and the product of A4 and the Jacobian of F[t, 01 with 
respect to u[. ] have half bandwidths 2. NPDE - 1 (i.e., at most 4. NPDE - 1 
nonzero entries per row). The vector B[t] has at most 2. NPDE nonzero entries 
which correspond to the values 

Recall that /?‘#O was assumed. If /?(xO) = 0 and a’(~,) #O (Dirichlet BC), for 
example, this condition is implemented by modifying entries of A4, A, and B[t] to 
obtain the equations 

ct(xo) f 8’(t, x0) = &r, x,); t > 0 and 8’(0, x0) = u’(0, x,,). 

The FEMOL approximate solution U( . , . ) is obtained by numerically solving 
Eqs. (5). This is accomplished with the “stiff’ implicit backward differentiation for- 
mulas in the LSODI package of Hindmarsh and Painter (cf. [ 14, 151). LSODI 
takes an input time discretization error tolerance TOL > 0, advances with internally 
chosen time steps and integration orders, and returns U[t], the approximate 
solution of Eqs. (5) and the vector of nodal values of U(t, . ). 

We modified the form of the local time error (per step) estimator in LSODI so 
that an attempt is made to obtain 

NPDE 

( 

NPDE 

ig, II est’(t, 1 II; G (TOL)* iF, II U(L . ,Ili+ 1 
> 

. (6) 

Here, est(t, . ) = {est’(t, . )};= l,NPDE E S(6) is the function whose nodal values are 
the local time error estimates computed in LSODI. 

The character of the ODE initial value problem (5) is assumed to be such that 

NPDE 

i;, II O’O, . I- Ui(t, . 1 II; G CWW* 
> 

(7) 
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with a reasonable constant C independent of 6. Moreover, TOL is assumed to be 
selected such that 111 0 - U 111 is small with respect to 111 u - 8 l)l, and hence the total 
error e = u - U satisfies 

Ill e III A III u - 0 Ill = Wmax 4) as max h, + 0. (8) n n 

The question of how small TOL must be is not addressed here. For some results in 
this direction see BabuSka and Luskin [2]. 

3. THE ADAPTIVE FEMOL 

The MOL variation presented here differs from the MOL just described in two 
basic ways. First, reliable error information is obtained during problem integration 
by computing an a posteriori estimate 8(t) of (11 e(t, ) /I/ at each t in a set of initially 
provided, equally spaced times { tk}k = l,K c (0, T). E is described in the next section. 
Second, adaptive regridding occurs at times {T, jm 3, c {t,}, = ,,K. The selection of 
the regridding times depends on the computed values of b(. ). 

Integration begins and procedes as in the nonadaptive FEMOL until regridding 
occurs at some time t,. A new grid 6 + is created from the present grid 6 at tk by 
uniformly subdividing some elements and removing groups of contiguous nodes to 
coalesce others. New initial data U( t: , ) E S(6 + ) is determined simply by inter- 
polating the already computed U(t,, ) E S(6) (for the present class of problems, 
linear interpolation is more efficient and has been observed to be no less accurate 
than L, or other “global” projections). 

The grid 6 + and data U(t:, ) define a semidiscrete approximate 
O(t, . ) E S(6 + ) for t 3 t, as in Eqs. (4) and an ODE initial value problem of the 
form (5) for solution values at the nodes of 6 + . Integration of this problem com- 
mences at time tk by restarting LSODI with the same error tolerance TOL. ODE 
integration procedes smoothly through times when regridding does not occur. It 
continues forward in time until regridding again occurs or the final time T is 
reached. 

Let us summarize the input and output for this procedure. The input provided at 
the initial time To = 0 consists of 

(i) a grid &,, 
(ii) a time discretization error tolerance TOL > 0, 
(iii) a space discretization error tolerance EPS > 0, and 
(iv) the times {tkjk= ,,K = (kT/K},,,,, at with &(. ) is computed. 

The output from the procedure consists of 

(a) spatial accuracy estimates (&( tk) jk = l,K, 
(b) regridding times {T,},, , = {t,},= I,K, 
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(c) corresponding grids { 6, > m a i, and 
(d) an approximate solution U, which is in S(6,) for t E [T,, T,,, + ,). (10) 

There typically are a great many ODE integration time steps taken on each 
(t,, fk + i), and many of these intervals in each (T,, T,,, + I ). The TOL-dependent 
ODE time stepsize sequence generated by LSODI generally increases on each 
(T,, T,,,, ,), and it increases most rapidly just after being restarted at T,,,, when 
LSODI is permitted to choose the initial stepsize. As in the nonadaptive FEMOL, 
we assume that the errors due to the grids {6,},, I dominate those due to time 
discretization. 

The primary goal in selecting {T,,,},> , and constructing { 6, Im 2, is to obtain a 
reliable solution in the sense that 

Ill 4~ . ) III G EWII 46 . 1 Ill, t E (0, T). 

The secondary goal is that {T,,, j and (6,) should be chosen so that 

(11) 

the total work required to integrate the IBVP on 52 x (0, T) is less than 
that required with the same input and any other selections of regridding 
times {7’s}s2, c {t,}k=,,K and grids {6,),s,, which yield (11). (12) 

The basic strategy used to achieve these goals is summarized as follows: 

(i) Integration procedes only in the positive time direction and no infor- 
mation is obtained from the future. 

(ii) Information is collected only at the input times {tk}. The amount of 
information stored at any time is small and is discarded after one regridding takes 
place in the future. 

(iii) Regridding occurs at some tk if, and only if &(t,) > 0.95 EPSlll U(t,, . ) l/l. 
(iv) Regridding is carried out at tk in order that &(tz ) 2 

EPSDNIII U(t,, . ) 111, where EPSDN E CO.6 EPS, 0.9 EPS] is adaptively chosen and 
~?(t,+ ) is a prediction (described in the next section) of the 111 . Ill-error immediately 
after time t, with the new grid. 

Pure relative II/ . II/-error control is used so that the reader can better compare the 
ability of the method to estimate and control errors in the four problems of Sec- 
tion 8. In practice, EPS might better be a combined relative-absolute error 
tolerance, as the time discretization error tolerance TOL is here. Note that the con- 
stant 0.95 in (iii) introduces a high risk of violating (11) on some time interval 
(fk, tk+ ,). This constant was chosen in order to show the dependence of error con- 
trol on error estimation in the experiments described in Section 8. 

From (iii) and (iv) one sees that the regridding times are implicitly determined by 
EPSDN and the constructed grids. A grid is retained until &‘/l/i UIII has grown to at 
least G times its value just after grid construction, where G = 0.95 EPS/EPSDN E 
(1.05, 1.60). Let us remark that the character of the PDEs is assumed to be suf- 
ficiently dissipative so that the influence of local errors decreases in time. 
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In attempting to achieve the secondary goal (12), a work expression is employed 
which utilizes ODE time stepsize information and computed values of b( ). This 
expression is used to select EPSDN and is described in Section 6. 

4. ERROR ESTIMATION 

Let t be one of the given input times {tk}k= ,,K and 6 of the form (2), (3) be the 
last space grid constructed before time t. The a posteriori estimate F(t) of 
III 44 . 1 III = III 4t, . 1 - V4 . ) III is 

i 

N NPDE 

i 

Ii2 

F(t) = 1 c IvtWl’ 3 (13) 
n=l i=l 

where q: is the local error indicator for the ith PDE on the nth element: 

0 

I?fWl’~ 
hZ 

if “‘(xn~r2+xn)=O~14) 

1WcLl +x,)/2) s 
-‘” Ir’(t,x)12dx otherwise. 
Yn I 

The function r’(t, . ) is the residual of the ith PDE (neglecting the discontinuities at 
the nodes): 

r’(t,x)= V,(t,x)-a\(x) U:(t,x)-f’(t,x, U(t,x)). (15) 

The residual is obtained via nodal values in U[t] and (d/dt) U[t] from LSODI and 
integrated in (14) with 2-point Gaussian quadrature. 

The quality of the estimator 6 can be measured with the effectivity index 

o(t) = 4~Mll4~~ . 1 III. (16) 

This quality was theoretically analyzed in the setting of linear uncoupled PDEs by 
the authors [6, 71, where it was shown that 

max 1 o(t) - 1 I -i 0 (17) 

as the space grid sizes converge to zero. The key assumptions used in the proof of 
(17) were that the exact solution u is sufficiently smooth, u,, does not degenerate to 
the zero function, ODE integrations are sufficiently accurate, and that the grids are 
not too irregular or modified too frequently. 

All theoretical details have not been carried out for nonlinear reaction-diffusion 
systems, but computational experience suggests that similar theory applies here. 
The evaluation of 8 is included in many experiments in Section 8. 



METHOD OF LINES 41 

Let us now assume that t E ( T,,, } m > 1 and the grid 6 is about to be modified. The 
111 * (I/-error immediately following a proposed regridding 

6+ = {iw =x, <xl < ... <x,++ =m+} 

is estimated with 

N+ NPDE 112 
&t+)= c 1 Irl:(t+)12 > (18) 

j=1 i=l 

where {$(t + )} are predicted values of the error indicators for the grid 6 +. These 
indicators are determined from the already computed (q:(t)} in the following way. 

If some element (x,- , , x,) is to be relined into the union 

‘O o+4(x:I,x/+) 
,= io 

of q uniform subelements, then a q-fold decrease in the contribution to the /(I . //I- 
error on (x, ~, , x,) is predicted: 

JO-l+y NPDE NPDE 

/?” ;c, lyl:(t+)12=q-2 c ItlM’. 
i=I 

(19) 

Alternatively, if some q contiguous elements {(x, _ 1, x,)}, = ng,nO ~, + y in the present 
grid are to be coalesced to form one new element (x,7,, x,+ ), then 

If it happens that h,, = ... =hnO- l+y, then (20) corresponds to a predicted q-fold 
increase in the contribution to the II/ . III-error on (x,~-, , x,,- i +,) = (x,? , , x,+ ). 

These predictions, as those used in [7], are based on the expectation that for 
n=l.N 

NPDE 

;;, I rt(t) I2 

a’(x) 1 uI,,(t, x) 1 2 dx . (1 + o(h,)) as h, -0. (21) 

When the grid 6 is to be modified, additional information is extracted from the 
error indicators {q:(t)}. A piecewise constant function is constructed: 

> 

113 

; XE(X”-I,X,),n=LN (22) 
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which is an approximation of the cube root of the integrand in (21). From the 
definition (13) of 8(t), one sees that 

a2(t) = ng, 2 j;-, w3(t, x) dx. 
n 

(23) 

The function w(t, . ) and (23) are explicitly used in determining the “shape” of the 
new grid 6 + . 

5. GRID SHAPE AND INTENSITY 

In relining and derelining a grid 6, two properties of 6 are changed: its shape and 
its intensity. To explain what is meant, we begin more generally by defining the 
shape of a positive integrable function 5 on 52 as the graph of the function 

wx, Y) - ax)laY); X, YEa 

and the intensity of 5 simply as 

4~ {(x)dx. J R 

Two positive functions have identical shape if and only if they are constant mul- 
tiples of one another. A positive integrable 4 can be magnified (multiplied by a con- 
stant) to get a function having any positive intensity and the shape of 5. 

The shape and intensity of a grid 6 are taken to be those of the associated grid 
function 

W,;x~(x,-,,x,) 
C6(x)={0.5(l,h.,+l/h,+,);x=x., 

for n=l,N, 
for n = 1, N- 1. (24) 

It is easily checked that 6 has intensity & = N. 
Let us briefly examine the effects of grid shape and intensity on the estimated 

111 . l/l-error in the present method. To this end, at a time t when a grid S is being 
used, we may use cs in the expression (23) for CC’(t) to obtain 

et) = 444 . 1, 56) 

1 ( j w3( 2, x) dx “2 
= iz Q (i(x) > 

(25) 

Since w(t, * ) (cf. (22)) tends toward a grid-independent function as the information 
defining it improves, let us consider it to be known. 

Now, had each element of 6 been bisected at the creation of the grid, for example, 
the resulting grid would have had the same shape and twice the intensity of 6. One 
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sees by examining the integrand in (25) that 8(t) would have been half as large. 
Alternatively, if the N- 1 interior nodes of 6 had been rearranged (i.e., the same 
number of extra nodes added as deleted here) then the shape of 6 would have been 
different, but the intensity would not. The change in a(t) then would have depen- 
ded strongly on how the shape of 6 had changed with respect to the shape of 
w(t, . ). 

In constructing a grid, UN reasonable relinement/derelinement algorithms for 
time-dependent PDEs must select a shape and an intensity for the grid which will 
work in the future. This is usually done indirectly: by focussing completely on local 
error estimates, for example. In the adaptive FEMOL, these two properties are con- 
trolled more directly. A grid is constructed by 

(i) explicitly selecting a positive model gridfunction 5, 

(ii) magnifying < to yield an implicitly defined model grid intensity S, and 
(iii) relining and derelining so that the resulting grid has a shape closely 

resembling that of 4, with the number of elements approximately equal to ,f. 

Let T,,, be the time at which a grid 6 + is to be constructed from 6. Recalling the 
basic regridding strategy described in Section 3, we know that 

Q(Tm) 
III W T,n > 1 Ill ’ o’95 EPS 

and that the predicted error immediately following time T,,, with 6 + is to satisfy 

a(T,t 1 
Ill VT,,,, 1 Ill e EPSDN3 (26) 

with EPSDN E CO.6 EPS, 0.9 EPS] still to be chosen. The model intensity .Y is 
defined by (26). 9 is the minimum intensity that 6 + can have while having the 
shape of 5 and yielding (26). 

Assume that < and EPSDN have already been selected. The construction of 6 + is 
then carried out as follows. The elements ((x, _ 1, x, )fn= ,,N of 6 are uniformZy sub- 
divided or coalesced according to desired new local element sizes at the midpoints 
{x,-1,.2) = {(x,-, +x,)/2} of 6: 

~+(xn-1/2kC~ 
1 

i;(x ,,-,, 2)1 n= 1, N. 

The constant C>O in (27) is initialized in a predetermined way and is iteratively 
adjusted until (26) holds. More specifically, C is initialized as 

A(MT,n, .I, 0 
Co = EPSDN 111 U( T,,,, . ) (I/ 
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and nonnegative “refinement” integers (MOD(n)}, = l,N are obtained from the 
integral parts of the “ratios” {h,/h + (x,- 1,2)}n= l,N of old to desired new element 
sizes. An element is marked for uniform subdivision into MOD elements if its 
MOD value exceeds one; it is marked for retention of MOD = 1; and a group of 
contiguous old elements are marked for coalescence into one new element if their 
MOD values are zero and their element “ratios” sum approximately to one. 

Using {MOD(n)).=,,, and the already computed local error indicators 
{rlP?Jl for 4 W,+) is obtained as described in Section 4, allowing the com- 
putation of 

F= F(C,) = Q(C) 

EPSDN III W Tm 2 . ) III 
- 1. 

The iteration terminates if F(C,) is “close” to zero. Otherwise, F is assumed to have 
a zero bracketed by 0 and C, if F(C,) < 0 and by C, and C,( 1 + 2F(C,)) if 
F( C,) > 0, and bisection is used to iteratively adjust C and obtain a new grid. 

Further details of this grid construction algorithm are not given here, but several 
points are noted. While some mesh constraints are incorporated naturally throught 
the selection of <, none of the usual mesh constraints (on element subdivision 
ratios, ratio of neighboring element sizes, number of contiguous elements coalesced, 
etc.) are explicitly imposed in the above algorithm. The algorithm is relatively suc- 
cessful in controlling &( T,t ) with a small number of iterations. This is primarily due 
to the good starting value for C which improves as EPS (and EPSDN) decreases 
and the number of elements used in each grid increases. With EPS in the range 
(0.02,0.20), as was used in the experiments described in Section 8, typical final 
values of 1 F(C) I and number of iterations per grid were 0.0330.09 and 3-8, respec- 
tively. 

In view of (27) one can expect that the grid function tii + ( ) associated with 6 + 
will resemble the function C. {( ) in shape and intensity. Furthermore, one expects 
as in (25) that 

8(t) L fl(w(t, ), Cir) 

and from (26) that 

(29) 

From (28) it is clear that 5 should reflect the present and predicted future shape 
of w(t, . ). 5 is chosen to be a majorant of w( T,, . ) in the adaptive FEMOL. The 
selection process anticipates the future through comparison of a small amount of 
information collected at T,,, and the previous regridding time T,,, ~, . This process is 
described in Section 7. 
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The intensity, or number of elements in 6 + (and number of ODES in time to be 
solved) depends both on ?j and the final value of C in (27). Once 5 has been selec- 
ted, however, the intensity is determined by the parameter EPSDN, as evidenced by 
the inverse relation between C and EPSDN in (29). The selection of EPSDN is now 
described. 

6. CONTROL OF GRID INTENSITY 

Assume that the model grid function 5 has been chosen at a time T,,, when a grid 
6 + is to be constructed from 6. The parameter EPSDN determining the intensity of 
6+ is selected in an attempt to minimize the work per future (unknown) time step 
T m+l - T,,, which will be required with a grid having the shape of <. 

Consider two extreme values of EPSDN. If EPSDN is chosen to be 0.6 EPS 
(smallest permitted value), T, + , - T,,, would be as large as possible, but so also 
would be the number of ODES, since this number depends inversely on EPSDN. 
With EPSDN = 0.9 EPS (largest permitted value), the smallest ODE system would 
be integrated for the shortest period of time. The sum of such integrations could be 
quite costly, not only because of grid construction costs, but also since efficient use 
of an ODE solver whose internal stepsizes increase is made only if the solver is not 
frequently restarted. 

If T, = T, (first regridding), EPSDN is taken to be 0.9 EPS. Otherwise, it is 
selected by estimating the marginal benefit which would have resulted, had the 
value EPSDN, _ , of EPSDN used at T,,, _ I been altered. Let 

E(t) = 
0.95 EPS 

sup.,trr,,, I. 0 &(s)/jll U(s, . ) //I 11 > . EPSDNnJ~~ 1 

for t > T,,- , . The number s(t) is an estimate of the largest value which EPSDN 
could have taken at T,.- , while leading to successful PDE integration (i.e., 
&‘/Ill U 111 < 0.95 EPS) on (T, ~ r, t). Note that E(. ) decreases on (T, _ , , T,) and, by 
the basic regridding strategy described in Section 3, that E( T,+- ,) AO.95 EPS and 
&(T,)<EPSDN,_,. 

The work per regridding time step which would have been required by selecting 
EPSDN = s(t) at T,,, ~ , can be expressed as 

(STEP(t) + c”) 
WoRK(t)= (t- T,,- 1) E(t)’ 

Here, STEP(t) is the number of ODE time steps taken on (T,,- , , t) with 
EPSDN = EPSDN, ~ r . The constant ? is related to the overhead incurred at T,,- , 
in grid construction and data initialization. 

Using stepsize information returned from the ODE solver, computed values of 
d( .) and simple extrapolation for t > T,,,, profiles of a( .) and WORK( .) are 
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updated as time increases and are used to determine an “optimal” value of EPSDN 
at T,,, _ I in retrospect. This value then governs the selection of EPSDN at T,. 
Details of the final selection are not important. What is important is that changes in 
EPSDN smoothly reflect observed trends. Here, EPSDN is increased (decreased) by 
no more than 0.02 EPS (0.05 EPS) from one regridding time to the next. Such 
relatively small changes in EPSDN can be considered as insignificant in con- 
structing a single grid, since as partially indicated in Section 5, the relative 111 . Ill- 
error can be controlled only to within this margin of error of being EPSDN after 
grid construction. It is in the sum of such changes in EPSDN that the observed 
trends have an impact on the method. 

7. CONTROL OF GRID SHAPE 

As indicated in Section 5, the shape of the grid 6 + constructed from 6 at time T, 
resembles that of the model grid function r, which is chosen as a majorant of the 
function w( T,, . ). Recall that w( T,,,, . ) is an approximation of a function related 
to the exact solution’s second space derivatives at T, (cf. (22)) whose values are 
extracted from the local error indicators for 6. The process of selecting r is 
introduced by considering two extreme possibilities: 

(i) t(.)=w(T,, .) and 
(ii) [(.) = max,,a w(T,, x) (i.e., a constant function). 

Consider l as in (i). Using the representation (28) for the predicted error 
estimate a( T,’ ) immediately after T, and standard arguments of the calculus of 
variations, as in Babuska and Rheinboldt [3], it can be shown that the resulting 
grid 6 + would have the least intensity of all grids lowering the estimated relative 
(I( . I/)-error to any given EPSDN value. Since nothing is known for certain about 
the future shape of w(t, . ) and this choice yields the ODE system of smallest 
possible size, one might call (i) the low cost alternative. 

The local error indicators would be approximately equilibrated with (i), but only 
near time T,,, if the shape of wjt, . ) rapidly changes. Because an immediate and 
costly regridding could be necessitated, the choice (i) is not “optimal” in any prac- 
tically useful sense of the word for parabolic PDEs whose solutions’ higher 
derivatives undergo changes in shape. For such problems, (i) might be better ter- 
med the high risk alternative. The local orientation of (i) introduces a strong depen- 
dence of error control on the input parameters (i.e., the probability of a failure 
occurring on some interval (fkr tk + I ) is high) and a strong dependence on each 
piece of local information (it is often the case that a “few” of the local indicators 
defining w( T,,, , . ) are relatively very inaccurate). 

The choice (ii) of [ represents the opposite end of the risk-cost spectrum. It is a 
high cost alternative, since the resulting grid 6 + would be nearly uniform and have 
the largest intensity of all reasonable grids lowering &‘/(I\ U 111 to any given EPSDN 
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value. It imposes a low risk of losing control over errors, since unpredictable 
changes in the shape of higher solution derivatives would be accounted for, as well 
as isolated instances of inaccurate local information. 

Neither (i) nor (ii) represents a viable alternative. Heuristics must be employed 
to balance risk and cost and to predict the future. All reasonable algorithms of the 
present type must use heuristics to predict the future, since the future is generally 
far ahead of the present: much farther than for which accurate and inexpensive 
local extrapolations can be used. 

Physical reasoning can be used (i.e., mass conservation, expected wave speeds, 
etc.) or numerical simulations can be adopted (i.e., global extrapolations, averaged 
or extended information, etc.). Can such prediction processes ever be quantitatively 
assessed or compared, or better justified in a general way? If so, the first step may 
be to see them for what they are: pattern recognition processes. Such a process con- 
sists of three (generally nondistinct) stages: 

(i) Representation. Reduction of (perhaps “noisy”) data into a convenient 
and invariant form. 

(ii) Feature Extraction. Relevant measurements taken from the reduced data. 
(iii) Classification. Decisions made by comparing feature values in an 

attempt to improve recognition or to avoid misrecognition. 

Let us use this framework and terminology to describe the construction of 5 at 
time T,,,. The “pattern” we wish to predict, or recognize is the shape of the function 

W(x) E max 46 xl, 
rE CT,. r,+ I] 

where T,,,, , is unknown, but T,, 1 - T,,, is assumed to be comparable to 
T,,, - T,,-,. The attempt to do this consists of constructing a piecewise linear 5 
which majorizes w( T,, . ) an w d h ose shape approximates that of W. The reasoning 
behind this choice comes from a variational principle related to the present problem 
and which involves the functional A used in the representation (28) of 8’. 

To construct c, each finite element grid is required to contain theflxed nodes of a 
uniform macro grid A. A is supplied as input at the initial time and is a 3-level grid, 
whose several “large” level 1 macro elements each have size 4H, and whose level 2 
and 3 subelements have sizes 2H and H, respectively. The size H (4H) is related to 
the maximum (minimum) risk of losing control over 111 e II/ that one is a priori 
willing to take and the minimum (maximum) price one is willing to pay to keep it. 
The algorithm for constructing 5 tries to manage risk and cost on each level 1 
macro element (X, X+ 4H) by first 

Reducing data. The many pieces of data defining w( T,,,, . ) on (X, X+ 4H) are 
replaced by three piecewise constant functions { W,( T,, . )},= 1,2,3, where 
?I’,( T,, . ) takes the maximum value of w( T,, . ) on each of the 2’-’ level p 
macro elements contained in (X, X+ 4H). In a similar manner, three piecewise con- 

581/63/l-4 
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stant representations { W,,( T,,- , , . )},= ,,2,3 of w( T, _ , , . ) on (X, X+ 4H) were 
formed at time T,,, ~ i, where w( T,,, _ 1, * ) = 0 if T,,, _, = 0 (the initial time). 

‘What relevant features can be extracted from these representations? In solving 
many parabolic reaction-diffusion problems, it has been observed that there often is 
a correlation, on some scale, between spatial differences in w( T,,, 1, . ) and the way 
w subsequently grows in time. The algorithm looks for such a correlation on 
(X, X + 4H) x (T, ~, , T,) by taking three measurements: 

5 
X+4H 

Alp E I WdTm, xl- w,,U’,~. ,, x)1 dx; p= 1, 2, 3. 
X 

These three feature values are used to cfussz~y the evolution of w on 
(X, X+ 4H) x (T,,, ~, , T,). An “active” level is taken to be that corresponding to 
the largest index p* E { 1,2, 3 } for which 

If p* = 3 (which always is the case at the first regridding time T,), either w did not 
grow on (X, X+ 4H) x (T,,- 1, T,) or it is concluded that spatial differences in w at 
T,,- 1 were not the source of its growth. If p* = 2 (l), it is concluded that either a 
clear correlation existed on the scale 2H (4H) or w evolved in a way which was 
unpredictable at T,,- I on any smaller space scale. 

Determining an “active” level p* for (X, X+ 4H) can be interpreted as choosing 
one of three directions in the (x, t)-plane. The directions are defined by the 
magnitudes of time and space differences, { W,( T,,,, . ) - W,( T, ~, , . )} and 
{WK-,, .)- W,(Tm-,, .I} of W,, which is the most local of the three 
representations of w. The direction corresponding to j.~* is that along which 
W,(t, . ) changed the least for t E (T, _, , T,). 

Having classified the past evolution of w on each level 1 macro element in A, 
these classifications are used to predict the extent to which spatial differences in 
w(Tm,, . ) will affect the size of w(t, . ) in neighboring regions for t > T,. A macro 
subgrid consisting of the boundary nodes of every large level 1 element and the 
boundary nodes of every “active” level 2 or 3 element is formed (i.e., if U* = 2 for 
some (X, X+ 4H), then the node X+ 2H is in the subgrid). The model function 5 is 
taken to be the piecewise linear function on the subgrid whose jth subgrid nodal 
value is equal to the maximum of w( T,, . ) between the j - 1 st and j + 1 st subgrid 
nodes. These values are obtained from those of the piecewise constant represen- 
tations { W,( T,, . )}, which are subsequently stored for use in computing feature 
values at the next regridding time. 

There are two important effects of choosing 5 to be continuous and piecewise 
linear, as opposed to being piecewise constant. First, the dependence of the selec- 
tion process on the input macro grid A is lessened. Second, the finite element grid 
6 + is smoothened, since the local element size h + (x) at x E Sz is inversely propor- 
tional to t(x). 
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E 

w at Tm 

” at Tm-] 

, 
A and 6+ 

c4H-a 

FIG. 1. Construction of 5 and grid 6 + at time T, = 3.8 x 1O-3 in Example 4 of Section 8. 

We show how < was constructed from w and how the shape of c determined that 
of the grid 6 + in two examples taken from Section 8. In these examples, the 
function w was extracted from the local error indicators, as described in Section 4. 
The results are pictured in Figs. 1 and 2, where A is the 3-level macro grid whose 
level 1 elements are delineated by vertical hash marks. 

Figure 1 depicts the model grid function 5 for Example 4, in which temperature 
and a single species concentration propagate in a flame front from right to left. 
Here, 6 + is the grid pictured at T,,, = 3.8 x 10e3 in Fig. 11 of Section 8. 

The “active” levels in the four level 1 macro elements shown in Fig. 1 were selec- 
ted to be (from left to right) 1, 1, 3, and 3. 5 localizes the right side of w( T,, . ) as 
much as possible, since w has not grown in that region. The algorithm detects a 
correlation between spatial differences in w( T,,- I, ) and the growth of w at the 
left, however, and the extension of 5 to the left shows how the movement of w is 
predicted. 

By looking ahead of the moving front, where w is predicted to grow in the future, 
we see especially well how the shape of 4 determined the shape of the grid 6 +. 
While r is constant on the second level 1 macro element pictured, the 
corresponding nodes of 6 + are not quite uniformly spaced, since regridding consists 
of relining and derelining the (not pictured) previous grid. The parameter EPSDN 
determining the intensity of b + was chosen to be 0.85 EPS in the situation pictured 
in Fig. 1. Had the relative ((1 . I([ -error been reduced to approximately 0.6 EPS by 
taking EPSDN equal to this value, for example, 5 as many nodes would have been 
distributed in the same relative way as pictured. The majority of the extra nodes 
would have been located in the front at T,,,, where they never will be needed to 
lower the )]I . III-error. The remaining portion placed ahead of the front would only 
extend the next regridding time by a small amount. 

Figure 2 shows the function 4 and the grid 6 + which were constructed in the 
population ecology model in Example 1 of Section 8. 6 + is the grid pictured in 
Fig. 4 at T,,, = 0.6, when the populations are in the midst of their evolution from 
one localized spike to a spatially oscillatory steady state with several local maxima 
spread over the entire domain. 

The “active” levels in the 3-level macro grid A were selected to be 2 in the two 
central level 1 elements at time T, and 1 in all others. This reflects the fact that the 
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w at Tm 

w at T,-1 

, ,. . . . . . . . . . . . . . . . . ..-..... - .., , , h and 6+ 

4-4 H-W 

FIG. 2. Construction of 5 and grid S + at time T,,, =0.6 in Example 1 of Section 8 

spatial scale on which the growth of w is correlated with differences of w( T,,, ~ , , . ) 
is larger on the sides of the domain than at the center. As in Fig. 1, we see how the 
shape of 5 determined the shape of 6 +. The parameter EPSDN determining the 
intensity of 6’ was chosen to be 0.85 EPS at T,,,, as it was in the previous example. 
Unlike in the the propagating flame problem, however, where EPSDN was changed 
very little from one regridding time to the next, EPSDN was steadily decreased in 
regriddings subsequent to the one pictured in Fig. 2. It becomes computationally 
more efficient to increase the intensities of the grids as their shapes become more 
constant and the spreading influence of w is predicted. 

The strengths of coupling multigrid feature extraction with implicit, low order 
prediction in time lie in the generality of the approach, its empirical success in 
predicting shape, and the potential application of similar techniques in two or three 
space dimensions. It is not important that binary, 3-level macro girds are used. 
Experience indicates that the process of keeping risk and cost low through implicit 
shape prediction improves with p-level macro grids as p is increased, provided a 
reasonable number of large level 1 elements are present. It does seem important, 
however, that explicit shape predictors using representations of w at past regridding 
times not be used. The mesh sizes H and T,,, - T,,- 1 are not asymptotically small. 
Explicit Taylor expansions using these mesh sizes can be very inaccurate and 
readily destabilize the process they are meant to control. 

8. COMPUTATIONAL EXPERIMENTS 

The results of applying the adaptive FEMOL to numerically solve four reac- 
tiondiffusion problems are described here. These problems are of varying difficulty 
and were chosen to give a representative evaluation of the performance of the 
method. 

Most of the experiments fall into one of two categories. In the first, a reasonable 
set of input parameters was fixed in each problem and the adaptive method was 
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applied with a decreasing sequence of space and time discretization error tolerances 
EPS and TOL, where each TOL value was small with respect to the corresponding 
EPS value. In the experiment in the second category, these same TOL values were 
used with the same method, but in which no feedback related to regridding was 
processed, a posteriori error estimates were only computed at few target times, and 
increasing numbers of uniform, time-independent finite elements were used. 

The most important component of the adaptive method is the a posteriori error 
estimator a(t) (cf. Sect. 4), on which most automatically made decisions are based. 
The quality of &‘(t) is examined for both changing and unchanging grids with the 
effectivity index o(t) = F(t)/111 e(t) /II, where a very accurate approximation was used 
to compute the error e = u - U when the exact solution u was not available. Let us 
recall from Section 2 that 111 . 111 is a weighted L2 gradient norm (weighted H’ norm), 
and that 111 e 111 is predicted by theory to converge linearly to zero with decreasing 
local space grid sizes. 

The primary goal (cf. (ll), Sect. 3) of the adaptive FEMOL is to keep the 
relative I// . I/l-error below the tolerance EPS at all times. The method is relatively 
successful in achieving this objective, and we shall see that achievement of this goal 
depends strongly on the quality of b. Rough estimates of the cost in controlling the 
error are gotten by comparing the CPU times required in the adaptive and non- 
adaptive runs. These times include a small amount required in I/O associated with 
the experiments, but within each experiment they provide a fair estimate of the total 
cost. 

The secondary goal (cf. (12), Sect. 3) of the adaptive FEMOL is to keep costs as 
low as possible, given a set of input and the control mechanisms of the method. 
Note that the CPU time comparisons mentioned above do not provide a fair 
measure of performance for this goal. At the end of this section we summarize 
results of an experiment designed to more adequately gage the relative cost of the 
adaptive procedure. 

All experimental runs were made using the program FEMOL 1, double precision 
arithmetic, and the FORTRAN H compiler on the IBM System 370/3081K at the 
NIH. The notation used to describe the experimental results has been introduced 
earlier or is self-evident, with the exceptions of 

CPU = IBM 3081K set, 

meanNO.ELTS.=(l/T). 1 N,+,(T,,-T,,-,), 
m>l 

where iV,- 1 is the number of finite elements used from time T,,.- , to time T,, and 
d(J, 2J, 4J), which denotes a 3-level macro grid containing J, 25, and 45 level 1, 2, 
and 3 macro elements, with a total of 4JS 1 fixed, uniformly spaced nodes (cf. Sec- 
tion 7). 

Example 1. (Population Ecology Model). The system considered here was 
proposed by Murray [19] to model certain planktonic predator-prey situations in 
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which crowding is a factor. The predators u (zooplankton) and essentially static 
prey u (phytoplankton) satisfy 

u, - 0.0125 u,, = [f(u) - u] U, 

u, - v.xx = cu - g(u)1 0, t > 0, x E (0, 2.5) (30) 

u, = u, = 0, t > 0, x = 0, 2.5, (31) 

and 

u = ug, v = 00, t = 0, x E (0, 2.5), (32) 

where 

f(u) = (35 + 1624 - 24’)/9, 

gb4 = (5 + 2415, 
(33) 

and the initial populations (u,, u,,} are as pictured in Fig. 3, along with the steady 
state to which {u, u} evolves. There are many steady state solutions of Eqs. (30) 
(31) (the stable solution (u, LJ} = { 5, 10) of the diffusionless ODE system, for exam- 
ple), and the one to which {u, U} evolves depends on which eigenfunction of the 
linearized coupled elliptic operator the perturbation of the initial data from { 5, lo} 
most resembles. These piecewise linear initial data were represented exactly in all of 
the experiments described here. 

This problem is relatively easy, and a properly selected number of uniformly 
spaced grid points would adequately keep the errors below a desired tolerance. The 
role of the adaptive FEMOL in this problem is that of a convenient and reliable 
tool, with which the probability of success in achieving the goal (11) in one 
application is high. 

0 1.25 2.5 

x 

FIG. 3. Initial and steady state solutions of population ecology model in Example 1. 
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TABLE I 

Results for Example 1 (NONADAP7’IVE): REL ERR = 1) 1 e 11 //I 11 u 111 (II = {u, ti}) and 
@=&/lllelll Computed at I, =p, p= 1, 10 

REL ERR IO-11 

No. elts. 
(unit) ODE TOL 

mean 
tP 

max 
1, 

mean 
‘P 

max 
1, CPU 

32 *= 1o-3 0.19 0.20 0.016 0.030 1 
64 42 0.09 0.10 0.003 0.005 2 

128 44 0.05 0.05 6 
256 218 0.02 0.02 21 

Tables I and II summarize the results for this problem. In computing the relative 
111 . /I/-error and 0 at the 10 target times for the entries of these tables, the “exact” 
solution u = {u, U} was taken to be the numerical solution computed with 512 
uniform elements and very accurate ODE time integration in the nonadaptive 
FEMOL. The approximations computed with the input parameters in rows 3 and 4 
of these tables were too accurate to be compared with u. The corresponding listed 
relative 111 . III-errors were therefore taken to be those estimated in the method. 

The value r in Table I, row 1 was chosen as the largest value of TOL for which 
the maximum relative 111 . III-error due to time discretization was less than 0.01. All 
other input TOL values in Tables I and II were chosen by subdividing r, as might 
be done in practice. This same procedure was repeated in Examples 2 and 3. 

Note the very high quality of the error estimator d in this example, as seen in the 
) 0 - 11 columns of both Tables I and II. In no instance did the estimated 111 . /I/- 
error differ from the true 111 111 -error by over 3.4%. This difference evidently 
diminishes as the relative 111 . Ill-error -+ 0, more rapidly in the uniform nonadaptive 
case than in the adaptive. 

TABLE II 

Results for Example 1 (ADAPTIVE): REL ERR and 0 Computed as in Table 1, 32 Uniform Elements 
Initially, 3-Level Macro Grid d(8, 16, 32) Used, REL ERR Estimated and Regridding 

Permitted at 50 Times in (0, lo] 

REL ERR IO-11 
No. elts. 

MESH mean max mean max 
EPS MODS mean max ODETOL I,, 1, f P t, CPU 

&=0.2 2 40 44 *= IO-3 0.17 0.18 0.021 0.034 2 
42 5 71 78 512 0.09 0.10 0.015 0.025 4 

*s/4 4 134 148 714 0.05 0.05 10 
63 6 290 332 $3 0.02 0.02 43 
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We next observe that the adaptive FEMOL successfully achieved its primary 
goal in all 4 runs, as witnessed by comparing the desired maximum relative (I( . (I(- 
errors in the EPS column of Table II with the actual maximum relative 111 . [II-errors. 
In doing this, the mean number of elements used in each run exceeded the 
corresponding number of uniform elements by 5525%. The actual surcharge was 
about lOO%, however, as is seen by comparing CPU times in Tables I and II. We 
mention that the selection of the uniform finite element grid providing a desired 
accuracy EPS could be expensive, and this cost is not reflected in the CPU entries 
of Table I. The adaptive method must have higher overhead costs than the non- 
adaptive method, since the adaptive method makes decisions during the com- 
putations and is geared to deal reliably with a large class of problems. Because this 
problem is so simple, the 100% surcharge is irrelevant. 

The adaptive constructed grids in one of the runs are pictured in Fig. 4. The 
input and results for this run are summarized in the row marked with an asterisk in 
Table II. The construction of the grid at t = 0.6 was described in Section 7 and pic- 
tured in Fig. 2. We see that the nodes lead the spreading of {u,,, u,,} and the local 
errors. The selection of these grids was “guided” with the 3-level macro grid 
4(8, 16, 32). The parameter EPSDN, allowed in all examples to vary in CO.6 EPS, 
0.9 EPS], was chosen here to be no less than 0.7 EPS. 

Another set of grids for this problem are pictured in Fig. 5. These grids were con- 
structed by the adaptive FEMOL with the parameter EPSDNfixed as 0.9 EPS, i.e., 
the freedom of the method to determine the intensities of the grid (cf. Section 5) was 
restricted, as the relative 111 . I/( -error was lowered to just under EPS in each regrid- 
ding. The number of nodes used in this run was smaller than in that corresonding 
to Fig. 4, but the cost as measured in elapsed CPU time for this latter run was 60% 
higher, while the maximum relative 111 . /(l-error was no lower. 

Example 2. (FitzHugh-Nagumo Equations; cf. [ 18, 21 I). The version of these 
equations considered here provides a conceptual model of ionic current flow across 

NLIM. OF 

FIN. ELTS. 

t 
..-.-.__. -.-._-._---. ._._ _._ -_.._-. _ .-.. _ 148 

2 
.._....._. _._ - .-.-.. - ._._ _ .__.....-_._.... 112 

.6 90 .._...._. __.- - .__. 

.2 _, .._. - .-..... 72 

0 32 

0 1.25 2.5 

x 

FIG. 4. Adaptively constructed grids for Example 1. Parameters as in * row of Table II 
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134 

124 

114 

98 

92 
88 

8b 

72 

32 

0 1.25 2.5 

7. 

FIG. 5. Adaptively constructed grids or Example 1. Parameters as for run corresponding to Fig. 4 
except that EPSDN = 0.9 EPS. 

a semi-infinite nerve membrane. An electro-chemical potential u and “recovery” 
variable u satisfy 

u, = 4, + f(u) - 4 

II, = b(u - cv), t>o, XE(0, 120) 
(34) 

%(C 0) = - u2, 

u.J t, 120) = 0, t > 0, 
(35) 

u=v=o, t = 0, x E (0, 120), (36) 

and 

where 

f(u)=U(U-a)(1 -U) 

and here 

a=0.139, 

b = 0.008, 

c = 2.54, 

I = 0.45. 

(37) 

(38) 

I represents the magnitude of a constant current applied at the left end of the nerve 
and b is the reciprocal of the time scale associated with the recovery of the nerve. 
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Numerical studies in Mitchell and Manoranjan [IS], Rinzel [21] and elsewhere 
indicate the sensitivity of the solution behavior to changes in the parameters a, h, c, 
and I. Preliminary studies here suggest that with the values in (38), repetitive pulses 
(in u and u) traveling at speed A 0.4 are generated with firing frequency 
2 0.77 x 10-2. Firing frequency is defined as the reciprocal of the temporal period 
for a solution appearing to be a traveling wave for large x and t. 

The evolution of u = {u, u} is shown in Fig. 6, where values were computed in 
one of the most accurate nonadaptive runs. It is noted that because of the dif- 
fusionless form of the second of Eqs. (34), only U, - U, is explicitly controlled in 
the adaptive FEMOL, and the accuracy of approximating u enters naturally 
through its role in the residual of first of Eqs. (34). 

The results for this problem are summarized in Tables III and IV. The relative 
\I( 9 I//-error and 0 were computed with the “exact” solution as obtained via 960 
uniform elements and very accurate ODE time integration in the nonadaptive 
FEMOL. Estimated values were used for the relative errors in the most accurate 
entries of these tables, as was done in Example 1. 

The quality of 8 is seen in the 10 - 1 1 columns of Tables III and IV. At time 
t = 80, when a new pulse is rapidly developing at the left spatial boundary, the error 

.:I “=;-. , t=“, q& , t=lz; 
0 120 0 120 

x x 

.I@ , t=8; .:1 D=‘Oy 
0 120 0 120 

x x 

FIG. 6. Solutions of FitzHugh-Nagumo equations in Example 2 
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TABLE III 

Results for Example2 (NONADAPTIVE): RELERR= ~~~e~~~/~~~u~~~ (II= {u, u}) and @=&/lllelll 
Computed at I,, = 2Op, p = 1,4 

REL ERR IO-11 

No. elts. 
(unif.) ODE TEL 

mean 
‘P 

max 
t, 

mean 
(P 

max 
‘P CPU 

90 z= 10-j 0.19 0.21 0.09 0.19 8 
180 512 0.09 0.10 0.04 0.08 25 
360 r/4 0.05 0.05 13 
120 48 0.02 0.02 224 

was underestimated by 43% when a large (0.2) relative error was requested in the 
adaptive FEMOL. d estimated the error much more accurately at the other target 
times, however, and the quality of & evidently improves as the relative 111 . /iI- 
error + 0, in both the adaptive and nonadaptive cases. 

By comparing the EPS and max REL ERR entries of Table IV, two failures to 
achieve error control according to the goal (11) are seen, the failure for EPS = 0.1 
being “lower level” than that for EPS =0.2. These failures could have been 
eliminated by “tuning” the algorithm (i.e., allowing regridding to occur before 
g//11/ U 111 > 0.95 EPS) or by requesting more accuracy than is actually needed. But 
these failures show how dependent goal achievement is on the performance of the 
error estimator in an adaptive method such as the present. 

By comparing the NO. ELT. and CPU entries of the last three rows of Tables III 
and IV, one sees that the mean number of elements used in the adaptive FEMOL 
was about $ of the corresponding number of uniform elements, but that the same 
fraction of CPU time was not saved until the II) . /I/-error was about 2-3%. This is 
primarily due to the fact that the traveling fronts in this problem are not very 

TABLE IV 

Results for Example 2 (ADAPTIVE): REL ERR and B Computed as in Table III, 80 Uniform 
Elements Initially, S-level Macro Grid d( 10, 20, 40) Used, REL ERR Estimated and 

Regridding Permitted at 100 Times in (0, 2001 

No. elts. REL ERR [B-i/ 

MESH mean max mean max mean max 
EPS MODS ODETOL I,, ‘IJ ‘P t, CPU 

E = 0.2 15 72 80 r=lO-3 0.22 0.29 0.17 0.43 11 
*E/2 20 82 105 512 0.11 0.13 0.09 0.32 22 
614 17 190 221 714 0.04 0.05 - 52 
48 13 342 442 48 0.02 0.02 118 
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localized. As for Example 1, we emphasize that the CPU times for the nonadaptive 
runs do not reflect the true cost of achieving EPS relative /)I . Jlj-accuracy, whereas 
those for the adaptive runs do. 

Note that the number of regriddings remained relatively constant as EPS and 
TOL +O and that the mean number of finite elements appears to have linearly 
increased with decreasing EPS. These observations are made with almost all of the 
experiments of this section. They suggest two things: 

(1) The regridding strategy is being carried out exactly as planned. Grid 
shapes are chosen (somewhat stablely) in adapting to the changing nature of the 
solution, while the numbers of nodes (or grid intensities) are determined by the 
requested accuracy EPS. 

(2) Efficiency demands that pattern reognition notions be used to predict grid 
shapes, since the number of regriddings will not increase unboundedly as 
EPS + TOL + 0. The workhorse of the present method is the implicit ODE solver 
LSODI. The time stepsizes used by LSODI for each space grid decrease as the 
error tolerances decrease, but the relative distributions (or shapes) of the stepsize 
sequences change very little. These distributions depend primarily on the shapes of 
the space grids and higher solution derivatives, and they govern the most 
appropriate length of time to retain a grid. 

The grids constructed in one of the runs for this problem are shown in Fig. 7. 
The input and results for this run are summarized in the row marked with an 
asterisk in Table IV. Here, regridding occurred at 20 of the 100 times at which it 
was allowed. Grid shape selection was guided with the 3-level macro grid 
d( 10, 20,40), and the parameter EPSDN determining grid intensity was chosen to 
be no less than 0.8 EPS. 

NUM. OF 

FIN. ELTS 

200 I 
_..- -.... __.___.... 105 
-..- - --.. - -..,.. 

t - ..-..... .---_..-_ 98 
_- _ _.._. 

____ _... 
.---_ a7 

:zcr::::: : : : : : : : : : : : : : : : : : : 
--- 

.---- 74 
1oo ..--- 83 

0 60 120 

FIG. 7. Adaptively constructed grids for Example 2. Parameters as in * row of Table IV. 
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TABLE VI 

Results for Example 3 (ADAPTIVE): REL ERR and 8 Computed as in Table V, 80 Uniform 
Elements Initially, 3-Level Macro Grid d( 10, 20, 40) Used, REL ERR Estimated and 

Regridding Permitted at 140 Times in (0,0.07] 

No. elts. REL ERR IQ-11 

MESH mean max mean max mean max 
EPS MODS ODETOL t, ‘/J ‘P ‘, CPU 

E = 0.2 27 67 83 T= 10-3 0.18 0.19 0.065 0.154 12 
*s/2 19 105 135 42 0.08 0.09 0.018 0.023 18 

s/4 21 230 287 514 0.04 0.06 0.006 0.009 40 

43 25 314 467 $3 0.02 0.02 0.002 0.005 115 

of course excludes the overhead associated with determining the number of uniform 
elements needed to obtain a given relative /II . II/-accuracy EPS. 

The grids constructed in one of the adaptive runs are pictured in Fig. 8, along 
with the locations of the front centers. The input and results for this run are sum- 
marized in the row marked with an asterisk in Table VI. One sees that for 
0 < t < 0.025, the regridding frequency was determined automatically by the faster 
left-moving front, and that nodes were placed ahead of it in an effective manner. 
For t>0.035 the same was true of the right-moving front. 

NOM. OF 

FIN. ELTS. 

...................... 

-t 

...... 96 

.............. ... 

........ 

98 

. 100 

102 

116 

80 

x 

FIG. 8. Adaptively constructed grids for Example 3 and wave centers X= 101 and .x= 1 - 301. 
Parameters as in * row of Table VI. 
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Example 4. (Dwyer-Sanders Model Flame). This model has been proposed to 
simulate many of the basic features of flame propagation. It was used as a test 
problem for the Moving Finite Element method in Gelinas et al. [12]. The 
equations governing a single species mass density p and temperature T are 

Pr = Pxx -f(T)p, 

Tt = Txr +f(T)p, t > 0, x E (0, 1 ), 

p,(t, 0) = PX(4 1) = 0, 

T,(t, 0) = 0, T(t, 1) = g(t), t > 0, 

(42) 

(43) 

and 

where 

p= 1, T = 0.2, t = 0, x E (0, 1 ), (44) 

f(T) = 3.52 x lo6 exp( - 4/T) (45) 

and 

1 0.2 + t/(2 x lo-4), 
s(t)= * 2 

t<2x 10P4, 
. 3 t>2x 10P4. (46) 

The flame is ignated at (t, x) = (0, 1) and propagates from right to left at a 
relatively high rate of speed. In the numerical studies here, p and T were computed 
very accurately for 0 6 t d 2 x 10 ~ 4, and the values at t = 2 x 10 -4 were used as 
initial conditions for all experimental runs, in which integrations were carried out 
until time t = 0.006. 

The steep temperature profiles in the moving temperature-mass density front 
which were computed in one of the most accurate runs are pictured in Fig. 9. The 
front propagates at approximately constant speed for 0.003 < t < 0.006. This 

1.2 

T (t,x) 

.2 II t = ,003 I 001 t = .0002 

FIG. 9. Temperature T at various times in flame model in Example 4. 
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TABLE VII 

Results for Example4 (ADAPTIVE): RELERR=I(le(ll/ll(u(ll (u= {T,p}) and 
8 = a/l 11 e 1 (I Computed at t, = 5p x 10m4, p = 1,12; 192 Uniform Elements Initially, 

3-Level Macro Grid d( 12, 24, 48) Used, ODE TOL = 2 x 10e6 in All Runs, 
REL ERR Estimated and Regridding Permitted at 290 Times in (0.0002, 0.0061 

No. elts. REL ERR IO-11 

MESH mean max mean max mean max Wave 
EPS MODS ‘P fP *P *, CPU Speed 

E = 0.2 12 62 103 0.55 0.90 0.64 0.86 43 143.6 + 1.1 
*E/2 22 111 126 0.18 0.35 0.58 0.83 80 142.6 iO.3 
s/4 20 170 188 0.05 0.07 0.22 0.43 133 142.23 + 0.05 
48 18 289 353 0.02 0.03 275 142.11 + 0.02 
~116 20 487 724 0.01 0.01 680 142.08 + 0.01 

problem is much more difficult than the others considered thus far, due to the 
nature of the nonlinear kinetics. Changing grids to control errors and accurately 
resolve flame structure is more of a necessity here than a convenience. 

The results of applying the adaptive FEMOL to this problem with various 
requested relative accuracies EPS are summarized in Table VII. The experimental 
procedure differed from that used in Examples l-3 in two ways. First, it was not 
feasible to obtain an almost “exact” solution for comparison by using uniform, non- 
adaptive finite elements. The first three entries in the REL ERR and [6’- 1 / 
columns of Table VII were therefore computed by using the approximate solution 
obtained with the adaptive FEMOL and the parameters in row 5 as “exact.” The 
estimated accuracy of this approximate solution was better at many of the 12 target 
times than is indicated by the estimated mean and max REL ERR entries in row 5. 
Second, the same small input ODE error tolerance TOL was used in each run. This 
was done because the dependence of the time discretization error on TOL was 
observed to be less smooth in this problem than in the others. 

The approximate wave speed for 0.003 < t < 0.006 in each of the runs is listed in 
the last column of Table VII. The speeds were computed by monitoring the spatial 
locations of the T= 0.5, 0.75, and 1.0 values on the moving temperature front at 7 
evenly spaced times, Those familiar with this model will recognize the accuracies of 
these speeds, and rapid convergence as EPS + 0 is suggested by the entries. 

With the larger input EPS values, the ability of d to estimate the 111 . III-error 
decays significantly as time increases past 0.003. This can be seen be comparing 
each of the mean and max 18 - 11 values in Table VII and would be expected, given 
the relatively inaccurate speeds of propagation. The quality of Q improves as 
REL ERR + 0, however. This is suggested by the third pair of 18 - 1 I entries and 
the mass density and temperature gradient profiles computed with various EPS. 
The temperature gradients computed in many of the runs at the final time are 
shown in Fig. 10. 
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aT 
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1 EPS=.20 
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= ,025 

. 10 .19 

x 

FIG. 10. Temperature gradient at time t = 0.006 in Example 4 as computed with various requested 
relative accuracies. 

The ability of the adaptive scheme to control errors according to (11) depends 
strongly on its ability to estimate the errors. High level failures to achieve (11) are 
seen in Table VII for large EPS values and the reason for these failures is evident 
from the similarity of the REL ERR and 18 - 11 entries. We believe that if failures 
occurred for the two smallest EPS values, however, then these failures were at a 
much lower level than those observed for the large EPS values. 

To relate the cost of the adaptive FEMOL to that incurred with uniform, non- 
adaptive elements for this problem, 1000 elements and the same TOL value were 
used in one nonadaptive run. Over 1200 CPU set were required to complete the 
integration. The mean wave speed (as measured before) was 142.19, which along 
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FIG. 11. Adaptively constructed grids for Example 4 and locations of flame center for 
0.003 < ! < 0.006. Parameters as in * row of Table VII. 
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-15 0 1s 30 45 60 
% CPU TIME OVER CORRESPONDING 

UNRESTRICTED PARAMETER RUNS 

FIG. 12. Added cost in restricting the freedom algorithm in the four examples of this section. 

with the observed mass density and temperature gradient profiles indicates that the 
same accuracy would have been achieved with EPS = 0.04 in the adaptive FEMOL, 
at less than t of the cost. 

The automatically constructed grids in one of the runs are shown in Fig. 11, 
along with the flame center locations for 0.003 < t < 0.006. The input and results for 
the run in which these grids were constructed are summarized in the row marked 
with an asterisk in Table VII. The selection of the space grids was guided with the 
3-level macro grid A( 12, 24,48). The construction of the grid at t = 3.8 x lop3 was 
described in Section 7 and pictured in Fig. 1. Clearly, nodes are distributed in a way 
which anticipates the moving front. 

We conclude by describing the results of an experiment designed to assess the 
cost effectiveness of decisions made in adaptive regridding. The most important 
decisions concern grid shape and intensity. The intensity of a grid is controlled by 
selecting the parameter EPSDN E CO.6 EPS, 9 EPS] (cf. Sects. 5, 6). The shape of a 
grid is controlled by choosing 1 of 3 levels as being “active” on each of the J level 1 
macro elements contained in d(J, 25,45) (cf. Sects. 5, 7). 

In each of the four examples of this section we restricted the algorithm’s freedom 
to choose these parameters and compared costs with that for an “unrestricted” run. 
The unrestricted run in each example is that corresponding to the * table entries 
and that which produced the grids pictured. Eleven restricted runs were made for 
each problem: EPSDN was fixed as 0.7, 0.8, and 0.9 EPS, the “active” levels in all 
level 1 macro elements were fixed as the largest and the smallest possible, and all 
combinations of these EPSDN and “active” level restrictions were imposed. 

The CPU times used in the 44 restricted parameter runs were rounded to the 
nearest multiple of 5% of the corresponding unrestricted run CPU times. These 
results are summarized by the histogram in Fig. 12. While some of the restricted 
runs were slightly less expensive, we see that the decisions made by the algorithm 
are lowering cost the vast majority of the time. 
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9. SUMMARY 

Using piecewise linear finite elements in one space dimension and implicit 
integration formulas in time, an adaptive method of lines has been developed for a 
class of nonlinear parabolic partial differential equations. This class includes many 
equations which are used to model reaction-diffusion phenomena. 

The primary goal of this adaptive method is to keep a particular norm of the 
space discretization error less than a user-specified tolerance EPS at all times. Error 
control is obtained by adding and deleting space nodes when a computed estimate 
of the error has nearly exceeded EPS. This process is made efficient, without raising 
the risk of an error control failure, by monitoring ODE time stepsize information 
and utilizing multi-grid pattern recognition notions to predict appropriate grid 
intensities and shapes. 

Experiments presented here have shown that the computed error estimates are 
accurate, that the procedure reliably controls errors, and that the strategy to keep 
costs low is successful. These experiments were conducted with the program 
FEMOL 1, which uses the LSODI package to solve the ODE initial value problem 
resulting from each space grid. Information concerning FEMOL 1 can be obtained 
by contacting the first author. 

The process of collecting information about a solution through local estimates, 
assimilating this feedback at a more global level, and utilizing features extracted 
from the global representations was shown here to be an effective and efficient way 
to automatically construct grids. Many adaptive schemes incorporate this process 
in one form or another, but the question of how this should best be done has not 
been adequately addressed. 
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